Search results
Results from the WOW.Com Content Network
The inequality expressing this fact has constants that do not involve the dimension of the space and, thus, the inequality holds in the setting of a Gaussian measure on an infinite-dimensional space. It is now known that logarithmic Sobolev inequalities hold for many different types of measures, not just Gaussian measures.
In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations , including the theory of harmonic maps .
Whether a space supports a Poincaré inequality has turned out to have deep connections to the geometry and analysis of the space. For example, Cheeger has shown that a doubling space satisfying a Poincaré inequality admits a notion of differentiation. [3] Such spaces include sub-Riemannian manifolds and Laakso spaces.
In mathematics, and in particular in mathematical analysis, the Gagliardo–Nirenberg interpolation inequality is a result in the theory of Sobolev spaces that relates the -norms of different weak derivatives of a function through an interpolation inequality.
In mathematics, the special orthogonal group in three dimensions, otherwise known as the rotation group SO(3), is a naturally occurring example of a manifold.The various charts on SO(3) set up rival coordinate systems: in this case there cannot be said to be a preferred set of parameters describing a rotation.
The trace operator can be defined for functions in the Sobolev spaces , with <, see the section below for possible extensions of the trace to other spaces. Let Ω ⊂ R n {\textstyle \Omega \subset \mathbb {R} ^{n}} for n ∈ N {\textstyle n\in \mathbb {N} } be a bounded domain with Lipschitz boundary.
The Sobolev conjugate of p for <, where n is space dimensionality, is p ∗ = p n n − p > p {\displaystyle p^{*}={\frac {pn}{n-p}}>p} This is an important parameter in the Sobolev inequalities .
This category includes maps between manifolds, smooth or otherwise, particularly in geometric topology. Pages in category "Maps of manifolds" The following 14 pages are in this category, out of 14 total.