enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...

  3. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    Linnik's theorem (1944) concerns the size of the smallest prime in a given arithmetic progression. Linnik proved that the progression a + nd (as n ranges through the positive integers) contains a prime of magnitude at most cd L for absolute constants c and L. Subsequent researchers have reduced L to 5.

  4. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .

  5. Harmonic progression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_progression...

    In mathematics, a harmonic progression (or harmonic sequence) is a progression formed by taking the reciprocals of an arithmetic progression, which is also known as an arithmetic sequence. Equivalently, a sequence is a harmonic progression when each term is the harmonic mean of the neighboring terms.

  6. Symbolab - Wikipedia

    en.wikipedia.org/wiki/Symbolab

    Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011.

  7. Green–Tao theorem - Wikipedia

    en.wikipedia.org/wiki/Green–Tao_theorem

    There has been separate computational work to find large arithmetic progressions in the primes. The Green–Tao paper states 'At the time of writing the longest known arithmetic progression of primes is of length 23, and was found in 2004 by Markus Frind, Paul Underwood, and Paul Jobling: 56211383760397 + 44546738095860 · k ; k = 0, 1 ...

  8. Faulhaber's formula - Wikipedia

    en.wikipedia.org/wiki/Faulhaber's_formula

    The case = coincides with that of the calculation of the arithmetic series, the sum of the first values of an arithmetic progression. This problem is quite simple but the case already known by the Pythagorean school for its connection with triangular numbers is historically interesting:

  9. Arithmetic progression game - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression_game

    The arithmetic progression game is a positional game where two players alternately pick numbers, trying to occupy a complete arithmetic progression of a given size. The game is parameterized by two integers n > k. The game-board is the set {1,...,n}. The winning-sets are all the arithmetic progressions of length k.