Search results
Results from the WOW.Com Content Network
Isotopomers of isotopically modified ethanol. The molecule at the bottom left is not an isotopomer of any other depicted molecule. Isotopomers or isotopic isomers are isomers which differ by isotopic substitution, and which have the same number of atoms of each isotope but in a different arrangement.
In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, the same number of atoms of each element – but distinct arrangements of atoms in space. [1] Isomerism refers to the existence or possibility of isomers. Isomers do not necessarily share similar chemical or physical properties.
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state levels (higher energy levels). ). "Metastable" describes nuclei whose excited states have half-lives 100 to 1000 times longer than the half-lives of the excited nuclear states that decay with a "prompt" half life (ordinarily on the order of 10
See Isotope#Notation for an explanation of the notation used for different nuclide or isotope types. Nuclear isomers are members of a set of nuclides with equal proton number and equal mass number (thus making them by definition the same isotope), but different states of excitation. An example is the two states of the single isotope 99 43 Tc
All "stable" isotopes (stable by observation, not theory) are the ground states of nuclei, except for tantalum-180m, which is a nuclear isomer or excited state. The ground state, tantalum-180, is radioactive with half-life 8 hours; in contrast, the decay of the nuclear isomer is extremely strongly forbidden by spin-parity selection rules.
In chemistry, isotopologues (also spelled isotopologs) are molecules that differ only in their isotopic composition. [1] They have the same chemical formula and bonding arrangement of atoms, but at least one atom has a different number of neutrons than the parent.
Isotopes are nuclides having the same number of protons: e.g. carbon-12 and carbon-13. Isobars are nuclides having the same mass number (i.e. sum of protons plus neutrons): e.g. carbon-12 and boron-12. Nuclear isomers are different excited states of the same type of nucleus.