enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    Cramer's rule, implemented in a naive way, is computationally inefficient for systems of more than two or three equations. [7] In the case of n equations in n unknowns, it requires computation of n + 1 determinants, while Gaussian elimination produces the result with the same computational complexity as the computation of a single determinant.

  3. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    For a system involving two variables (x and y), ... Cramer's rule is an explicit formula for the solution of a system of linear equations, ...

  4. Cramer's theorem (algebraic curves) - Wikipedia

    en.wikipedia.org/wiki/Cramer's_theorem_(algebraic...

    The number of distinct terms (including those with a zero coefficient) in an n-th degree equation in two variables is (n + 1)(n + 2) / 2.This is because the n-th degree terms are ,, …,, numbering n + 1 in total; the (n − 1) degree terms are ,, …,, numbering n in total; and so on through the first degree terms and , numbering 2 in total, and the single zero degree term (the constant).

  5. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    Cramer's rule is a closed-form expression, in terms of determinants, of the solution of a system of n linear equations in n unknowns. Cramer's rule is useful for reasoning about the solution, but, except for n = 2 or 3, it is rarely used for computing a solution, since Gaussian elimination is a faster algorithm.

  6. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    The total derivatives are found by totally differentiating the system of equations, dividing through by, say dr, treating dq / dr and dp / dr as the unknowns, setting dI = dw = 0, and solving the two totally differentiated equations simultaneously, typically by using Cramer's rule.

  7. Cramér–Rao bound - Wikipedia

    en.wikipedia.org/wiki/Cramér–Rao_bound

    The Cramér–Rao bound is stated in this section for several increasingly general cases, beginning with the case in which the parameter is a scalar and its estimator is unbiased.

  8. Cramér's theorem (large deviations) - Wikipedia

    en.wikipedia.org/wiki/Cramér's_theorem_(large...

    The logarithmic moment generating function (which is the cumulant-generating function) of a random variable is defined as: = ⁡ ⁡ [⁡ ()].Let ,, … be a sequence of iid real random variables with finite logarithmic moment generating function, i.e. () < for all .

  9. Cramér's theorem - Wikipedia

    en.wikipedia.org/wiki/Cramér's_theorem

    Cramér’s decomposition theorem, a statement about the sum of normal distributed random variable; Cramér's theorem (large deviations), a fundamental result in the theory of large deviations; Cramer's theorem (algebraic curves), a result regarding the necessary number of points to determine a curve