Search results
Results from the WOW.Com Content Network
Its Euler characteristic is 0, by the product property. More generally, any compact parallelizable manifold, including any compact Lie group, has Euler characteristic 0. [13] The Euler characteristic of any closed odd-dimensional manifold is also 0. [14] The case for orientable examples is a corollary of Poincaré duality.
Thus the Euler class is a generalization of the Euler characteristic to vector bundles other than tangent bundles. In turn, the Euler class is the archetype for other characteristic classes of vector bundles, in that each "top" characteristic class equals the Euler class, as follows. Modding out by 2 induces a map
This isomorphism is realized by the Euler class; equivalently, it is the first Chern class of a smooth complex line bundle (essentially because a circle is homotopically equivalent to , the complex plane with the origin removed; and so a complex line bundle with the zero section removed is homotopically equivalent to a circle bundle.)
In calculating the Euler characteristic of S′ we notice the loss of e P − 1 copies of P above π(P) (that is, in the inverse image of π(P)). Now let us choose triangulations of S and S′ with vertices at the branch and ramification points, respectively, and use these to compute the Euler characteristics.
Charge transfer coefficient, and symmetry factor (symbols α and β, respectively) are two related parameters used in description of the kinetics of electrochemical reactions. They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1]
Homology theory can be said to start with the Euler polyhedron formula, or Euler characteristic. [16] This was followed by Riemann 's definition of genus and n -fold connectedness numerical invariants in 1857 and Betti 's proof in 1871 of the independence of "homology numbers" from the choice of basis.
Example charging graph. On the left: per-cell quantities. On the right: example values for a 40 Ah, 6-cell (12 V) battery. Note: schematic illustration; not based on actual measurements. IUoU is a DIN-designation [1] (DIN 41773) for a lead-acid battery charging procedure that is also known as 3-stage charging, 3-phase charging, or 3-step charging.
The connection with the Euler characteristic χ suggests the correct generalisation: the 2n-sphere has no non-vanishing vector field for n ≥ 1. The difference between even and odd dimensions is that, because the only nonzero Betti numbers of the m-sphere are b 0 and b m, their alternating sum χ is 2 for m even, and 0 for m odd.