enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    Its Euler characteristic is 0, by the product property. More generally, any compact parallelizable manifold, including any compact Lie group, has Euler characteristic 0. [13] The Euler characteristic of any closed odd-dimensional manifold is also 0. [14] The case for orientable examples is a corollary of Poincaré duality.

  3. Euler class - Wikipedia

    en.wikipedia.org/wiki/Euler_class

    Thus the Euler class is a generalization of the Euler characteristic to vector bundles other than tangent bundles. In turn, the Euler class is the archetype for other characteristic classes of vector bundles, in that each "top" characteristic class equals the Euler class, as follows. Modding out by 2 induces a map

  4. Characteristic class - Wikipedia

    en.wikipedia.org/wiki/Characteristic_class

    Characteristic classes are elements of cohomology groups; [1] one can obtain integers from characteristic classes, called characteristic numbers. Some important examples of characteristic numbers are Stiefel–Whitney numbers, Chern numbers, Pontryagin numbers, and the Euler characteristic.

  5. Chern–Gauss–Bonnet theorem - Wikipedia

    en.wikipedia.org/wiki/Chern–Gauss–Bonnet_theorem

    The Chern–Gauss–Bonnet theorem can be seen as a special instance in the theory of characteristic classes. The Chern integrand is the Euler class. Since it is a top-dimensional differential form, it is closed. The naturality of the Euler class means that when changing the Riemannian metric, one stays in the same cohomology class. That means ...

  6. Circle bundle - Wikipedia

    en.wikipedia.org/wiki/Circle_bundle

    This isomorphism is realized by the Euler class; equivalently, it is the first Chern class of a smooth complex line bundle (essentially because a circle is homotopically equivalent to , the complex plane with the origin removed; and so a complex line bundle with the zero section removed is homotopically equivalent to a circle bundle.)

  7. Riemann–Roch theorem for surfaces - Wikipedia

    en.wikipedia.org/wiki/Riemann–Roch_theorem_for...

    K) is a Chern number and the self-intersection number of the canonical class K, and e = c 2 is the topological Euler characteristic. It can be used to replace the term χ(0) in the Riemann–Roch theorem with topological terms; this gives the Hirzebruch–Riemann–Roch theorem for surfaces.

  8. Homology (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Homology_(mathematics)

    Homology theory can be said to start with the Euler polyhedron formula, or Euler characteristic. [16] This was followed by Riemann 's definition of genus and n -fold connectedness numerical invariants in 1857 and Betti 's proof in 1871 of the independence of "homology numbers" from the choice of basis.

  9. Morse theory - Wikipedia

    en.wikipedia.org/wiki/Morse_theory

    Using the fact that the alternating sum of the ranks of the homology groups of a topological space is equal to the alternating sum of the ranks of the chain groups from which the homology is computed, then by using the cellular chain groups (see cellular homology) it is clear that the Euler characteristic is equal to the sum = where is the ...

  1. Related searches euler characteristic of rp2 battery charge symbol example answer chart for class

    euler characteristics formulaeuler's formula
    euler characteristics wikipediaeuler's polyhedron