Search results
Results from the WOW.Com Content Network
Many chiral molecules have point chirality, namely a single chiral stereogenic center that coincides with an atom. This stereogenic center usually has four or more bonds to different groups, and may be carbon (as in many biological molecules), phosphorus (as in many organophosphates ), silicon, or a metal (as in many chiral coordination ...
The term "chiral" in general is used to describe the object that is non-superposable on its mirror image. [18] In chemistry, chirality usually refers to molecules. Two mirror images of a chiral molecule are called enantiomers or optical isomers. Pairs of enantiomers are often designated as "right-", "left-handed" or, if they have no bias ...
The term chiral / ˈ k aɪ r əl / describes an object, especially a molecule, which has or produces a non-superposable mirror image of itself. In chemistry, such a molecule is called an enantiomer or is said to exhibit chirality or enantiomerism.
Chiral molecules produced within the fields of organic chemistry or inorganic chemistry are racemic unless a chiral reagent was employed in the same reaction. At the fundamental level, polarization rotation in an optically active medium is caused by circular birefringence, and can best be understood in that way.
In chemistry, absolute configuration refers to the spatial arrangement of atoms within a molecular entity (or group) that is chiral, and its resultant stereochemical description. [1] Absolute configuration is typically relevant in organic molecules where carbon is bonded to four different substituents .
Chiral inversion is the process of conversion of one enantiomer of a chiral molecule to its mirror-image version with no other change in the molecule. [1] [2] [3] [4]Chiral inversion happens depending on various factors (viz. biological-, solvent-, light-, temperature- induced, etc.) and the energy barrier energy barrier associated with the stereogenic element present in the chiral molecule. 2 ...
There are three common naming conventions for specifying one of the two enantiomers (the absolute configuration) of a given chiral molecule: the R/S system is based on the geometry of the molecule; the (+)- and (−)- system (also written using the obsolete equivalents d- and l-) is based on its optical rotation properties; and the D/L system is based on the molecule's relationship to ...
An autocatalytic chemical reaction is that in which the reaction product is itself a reactive, in other words, a chemical reaction is autocatalytic if the reaction product is itself the catalyst of the reaction. In asymmetric autocatalysis, the catalyst is a chiral molecule, which means that a chiral molecule is catalysing its own production.