Search results
Results from the WOW.Com Content Network
To good approximation, they obey the so-called deep-water-wave dispersion law: =, irrespective of the stratification of the Sun, where is the angular frequency, is the surface gravity and = / is the horizontal wavenumber, [23] and tend asymptotically to that relation as .
The second strongest tidal constituent "S 2" is influenced by the sun, and its Doodson numbers are 273.555, meaning that its frequency is composed of twice the first Doodson argument, +2 times the second, -2 times the third, and zero times each of the other three. [50]
Liquid water and ice emit radiation at a higher rate than water vapour (see graph above). Water at the top of the troposphere, particularly in liquid and solid states, cools as it emits net photons to space. Neighboring gas molecules other than water (e.g. nitrogen) are cooled by passing their heat kinetically to the water.
The Sun emits UV radiation (about 10% of its total power), including extremely short wavelength UV that could potentially destroy most life on land (ocean water would provide some protection for life there). However, most of the Sun's damaging UV wavelengths are absorbed by the atmosphere before they reach the surface.
The typical tidal range in the open ocean is about 1 metre (3 feet) – mapped in blue and green at right. Mean ranges near coasts vary from near zero to 11.7 metres (38.4 feet), [ 4 ] with the range depending on the volume of water adjacent to the coast, and the geography of the basin the water sits in. Larger bodies of water have higher ...
Several authors in the 1960s and 1970s had suggested that the tidal forcing might generate resonant barotropic Rossby Wave modes, however these modes are extremely sensitive to ocean dissipation and in any event are only weakly excited by the long period tidal forcing (Carton,J.A.,1983: The variation with frequency of the long-period tides.
Away from resonance this can reduce tidal energy moving onto the shelf. However near a resonant frequency the phase relationship, between the waves on the shelf and in the deep ocean, can have the effect of drawing energy onto the shelf. The increased speed of long waves in the deep ocean means that the tidal wavelength there is of order 10,000 km.
The two high waters on a given day are typically not the same height (the daily inequality); these are the higher high water and the lower high water in tide tables. Similarly, the two low waters each day are the higher low water and the lower low water. The daily inequality is not consistent and is generally small when the Moon is over the ...