Search results
Results from the WOW.Com Content Network
The equivalent carbon content concept is used on ferrous materials, typically steel and cast iron, to determine various properties of the alloy when more than just carbon is used as an alloyant, which is typical. The idea is to convert the percentage of alloying elements other than carbon to the equivalent carbon percentage, because the iron ...
The relative importance of the various alloying elements is calculated by finding the equivalent carbon content of the material. The fluid used for quenching the material influences the cooling rate due to varying thermal conductivities and specific heats. Substances like brine and water cool the steel much more quickly than oil or air. If the ...
The carbon content of steel is between 0.02% and 2.14% by weight for plain carbon steel (iron-carbon alloys). Too little carbon content leaves (pure) iron quite soft, ductile, and weak. Carbon contents higher than those of steel make a brittle alloy commonly called pig iron.
X46Cr13 is the European Norm name for a common martensitic stainless steel with the numeric name 1.4034. It is equivalent to American Iron and Steel Institute standard 420C. It has the highest carbon content of the SAE 420 series. [1] [2] [3]
Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states: no minimum content is specified or required for chromium , cobalt , molybdenum , nickel , niobium , titanium , tungsten , vanadium , zirconium , or any other element to ...
The SI unit for specific strength is Pa⋅m 3 /kg, or N⋅m/kg, which is dimensionally equivalent to m 2 /s 2, though the latter form is rarely used. Specific strength has the same units as specific energy , and is related to the maximum specific energy of rotation that an object can have without flying apart due to centrifugal force .
Steel never turns into a liquid below this temperature. Pure Iron ('Steel' with 0% Carbon) starts to melt at 1,492 °C (2,718 °F), and is completely liquid upon reaching 1,539 °C (2,802 °F). Steel with 2.1% Carbon by weight begins melting at 1,130 °C (2,070 °F), and is completely molten upon reaching 1,315 °C (2,399 °F).
This causes carbon to diffuse into the surface of the steel. The depth of this high carbon layer depends on the exposure time, but 0.5mm is a typical case depth. Once this has been done the steel must be heated and quenched to harden this higher carbon 'skin'. Below this skin, the steel core will remain soft due to its low carbon content.