enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    These factorizations work not only over the complex numbers, but also over any field, where either –1, 2 or –2 is a square. In a finite field , the product of two non-squares is a square; this implies that the polynomial x 4 + 1 , {\displaystyle x^{4}+1,} which is irreducible over the integers, is reducible modulo every prime number .

  3. Difference of two squares - Wikipedia

    en.wikipedia.org/wiki/Difference_of_two_squares

    Therefore, the linear factors are (+) and (). Since the two factors found by this method are complex conjugates, we can use this in reverse as a method of multiplying a complex number to get a real number. This is used to get real denominators in complex fractions. [1]

  4. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    Factorization depends on the base field. For example, the fundamental theorem of algebra, which states that every polynomial with complex coefficients has complex roots, implies that a polynomial with integer coefficients can be factored (with root-finding algorithms) into linear factors over the complex field C.

  5. Grassmann number - Wikipedia

    en.wikipedia.org/wiki/Grassmann_number

    In mathematical physics, a Grassmann number, named after Hermann Grassmann (also called an anticommuting number or supernumber), is an element of the exterior algebra of a complex vector space. [1] The special case of a 1-dimensional algebra is known as a dual number .

  6. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Fermat's factorization method, named after Pierre de Fermat, is based on the representation of an odd integer as the difference of two squares: =. That difference is algebraically factorable as (+) (); if neither factor equals one, it is a proper factorization of N.

  7. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    The ring of formal power series over the complex numbers is a UFD, but the subring of those that converge everywhere, in other words the ring of entire functions in a single complex variable, is not a UFD, since there exist entire functions with an infinity of zeros, and thus an infinity of irreducible factors, while a UFD factorization must be ...

  8. General number field sieve - Wikipedia

    en.wikipedia.org/wiki/General_number_field_sieve

    When using such algorithms to factor a large number n, it is necessary to search for smooth numbers (i.e. numbers with small prime factors) of order n 1/2. The size of these values is exponential in the size of n (see below). The general number field sieve, on the other hand, manages to search for smooth numbers that are subexponential in the ...

  9. Lenstra elliptic-curve factorization - Wikipedia

    en.wikipedia.org/wiki/Lenstra_elliptic-curve...

    However, the algorithm fails when p - 1 has large prime factors, as is the case for numbers containing strong primes, for example. ECM gets around this obstacle by considering the group of a random elliptic curve over the finite field Z p, rather than considering the multiplicative group of Z p which always has order p − 1.