enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  3. Electron transfer - Wikipedia

    en.wikipedia.org/wiki/Electron_transfer

    Especially in proteins, electron transfer often involves hopping of an electron from one redox-active center to another one. The hopping pathway, which can be viewed as a vector, guides and facilitates ET within an insulating matrix. Typical redox centers are iron-sulfur clusters, e.g. the 4Fe-4S ferredoxins. These sites are often separated by ...

  4. Reduction potential - Wikipedia

    en.wikipedia.org/wiki/Reduction_potential

    In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...

  5. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    When an oxidizer (Ox) accepts a number z of electrons ( e −) to be converted in its reduced form (Red), the half-reaction is expressed as: Ox + z e − → Red. The reaction quotient (Q r) is the ratio of the chemical activity (a i) of the reduced form (the reductant, a Red) to the activity of the oxidized form (the oxidant, a ox).

  6. Randles–Sevcik equation - Wikipedia

    en.wikipedia.org/wiki/Randles–Sevcik_equation

    n = number of electrons transferred in the redox event (usually 1) A = electrode area in cm 2; F = Faraday constant in C mol −1; D = diffusion coefficient in cm 2 /s; C = concentration in mol/cm 3; ν = scan rate in V/s; R = Gas constant in J K −1 mol −1; T = temperature in K; The constant with a value of 2.69×10 5 has units of C mol − ...

  7. Redox gradient - Wikipedia

    en.wikipedia.org/wiki/Redox_gradient

    An E h of zero represents the redox couple of the standard hydrogen electrode H + /H 2, [8] a positive E h indicates an oxidizing environment (electrons will be accepted), and a negative E h indicates a reducing environment (electrons will be donated). [1] In a redox gradient, the most energetically favorable chemical reaction occurs at the ...

  8. Redox - Wikipedia

    en.wikipedia.org/wiki/Redox

    Redox reactions can occur slowly, as in the formation of rust, or rapidly, as in the case of burning fuel. Electron transfer reactions are generally fast, occurring within the time of mixing. [20] The mechanisms of atom-transfer reactions are highly variable because many kinds of atoms can be transferred.

  9. Electrochemical reaction mechanism - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_reaction...

    Elementary steps like proton coupled electron transfer and the movement of electrons between an electrode and substrate are special to electrochemical processes. . Electrochemical mechanisms are important to all redox chemistry including corrosion, redox active photochemistry including photosynthesis, other biological systems often involving electron transport chains and other forms of ...