Search results
Results from the WOW.Com Content Network
Brahmagupta's interpolation formula is a second-order polynomial interpolation formula developed by the Indian mathematician and astronomer Brahmagupta (598–668 CE) in the early 7th century CE. The Sanskrit couplet describing the formula can be found in the supplementary part of Khandakadyaka a work of Brahmagupta completed in 665 CE. [1]
In the mathematical field of numerical analysis, a Newton polynomial, named after its inventor Isaac Newton, [1] is an interpolation polynomial for a given set of data points. The Newton polynomial is sometimes called Newton's divided differences interpolation polynomial because the coefficients of the polynomial are calculated using Newton's ...
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial. Neville's algorithm evaluates this polynomial. Neville's algorithm is based on the Newton form of the interpolating polynomial and the recursion relation for the divided differences .
Muller's method fits a parabola, i.e. a second-order polynomial, to the last three obtained points f(x k-1), f(x k-2) and f(x k-3) in each iteration. One can generalize this and fit a polynomial p k,m (x) of degree m to the last m+1 points in the k th iteration. Our parabola y k is written as p k,2 in this notation. The degree m must be 1 or
It is assumed that the value of a function f defined on [,] is known at + equally spaced points: < < <.There are two classes of Newton–Cotes quadrature: they are called "closed" when = and =, i.e. they use the function values at the interval endpoints, and "open" when > and <, i.e. they do not use the function values at the endpoints.
In the zeroth-order example above, the quantity "a few" was given, but in the first-order example, the number "4" is given. A first-order approximation of a function (that is, mathematically determining a formula to fit multiple data points) will be a linear approximation, straight line with a slope: a polynomial of degree 1. For example:
Just as the Taylor polynomial of degree d has d + 1 coefficients that depend on the function f, the Padé approximation also has d + 1 coefficients dependent on f and its derivatives. More precisely, in any Padé approximant, the degrees of the numerator and denominator polynomials have to add to the order of the approximant.