enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Head (vessel) - Wikipedia

    en.wikipedia.org/wiki/Head_(Vessel)

    This is a torispherical head also named Semi ellipsoidal head (According to DIN 28013). The radius of the dish is 80% of the diameter of the cylinder ( r 1 = 0.8 × D o {\displaystyle r_{1}=0.8\times Do} ).

  3. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.

  4. Total dynamic head - Wikipedia

    en.wikipedia.org/wiki/Total_dynamic_head

    In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.

  5. Pressure vessel - Wikipedia

    en.wikipedia.org/wiki/Pressure_vessel

    The ASME definition of a pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure. [2]The Australian and New Zealand standard "AS/NZS 1200:2000 Pressure equipment" defines a pressure vessel as a vessel subject to internal or external pressure, including connected components and accessories up to the connection to external ...

  6. Pressure head - Wikipedia

    en.wikipedia.org/wiki/Pressure_head

    Pressure head is a component of hydraulic head, in which it is combined with elevation head. When considering dynamic (flowing) systems, there is a third term needed: velocity head . Thus, the three terms of velocity head , elevation head , and pressure head appear in the head equation derived from the Bernoulli equation for incompressible fluids :

  7. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    Euler’s pump and turbine equations can be used to predict the effect that changing the impeller geometry has on the head. Qualitative estimations can be made from the impeller geometry about the performance of the turbine/pump. This equation can be written as rothalpy invariance: =

  8. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:

  9. Souders–Brown equation - Wikipedia

    en.wikipedia.org/wiki/Souders–Brown_equation

    Calculate the maximum allowable vapor velocity in the vessel by using the Souders–Brown equation: = where v is the maximum allowable vapor velocity in m/s ρ L is the liquid density in kg/m 3 ρ V is the vapor density in kg/m 3