enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    In particular, for series with values in any Banach space, absolute convergence implies convergence. The converse is also true: if absolute convergence implies convergence in a normed space, then the space is a Banach space. If a series is convergent but not absolutely convergent, it is called conditionally convergent.

  3. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    In a normed vector space, one can define absolute convergence as convergence of the series (| |). Absolute convergence implies Cauchy convergence of the sequence of partial sums (by the triangle inequality), which in turn implies absolute convergence of some grouping (not reordering). The sequence of partial sums obtained by grouping is a ...

  4. Uniform absolute-convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_absolute-convergence

    Uniform absolute-convergence is independent of the ordering of a series. This is because, for a series of nonnegative functions, uniform convergence is equivalent to the property that, for any ε > 0, there are finitely many terms of the series such that excluding these terms results in a series with total sum less than the constant function ε ...

  5. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    The Maclaurin series of the logarithm function ⁡ (+) is conditionally convergent for x = 1. The Riemann series theorem states that if a series converges conditionally, it is possible to rearrange the terms of the series in such a way that the series converges to any value, or even diverges.

  6. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    The absolute value of a number may be thought of as its distance from zero. alternating series An infinite series whose terms alternate between positive and negative. alternating series test Is the method used to prove that an alternating series with terms that decrease in absolute value is a convergent series.

  7. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    For instance, in contrast to the behavior of finite sums, rearranging the terms of an infinite series may result in convergence to a different number (see the article on the Riemann rearrangement theorem for further discussion). An example of a convergent series is a geometric series which forms the basis of one of Zeno's famous paradoxes:

  8. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound for a series or for the absolute values of its terms is an effective way to prove convergence or absolute convergence of a series. [48] [49] [47] [50]

  9. Riemann series theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_series_theorem

    In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.