Search results
Results from the WOW.Com Content Network
Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...
Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...
This step is sometimes also called playout or rollout. A playout may be as simple as choosing uniform random moves until the game is decided (for example in chess, the game is won, lost, or drawn). Backpropagation: Use the result of the playout to update information in the nodes on the path from C to R. Step of Monte Carlo tree search.
This can perform significantly better than "true" stochastic gradient descent described, because the code can make use of vectorization libraries rather than computing each step separately as was first shown in [6] where it was called "the bunch-mode back-propagation algorithm". It may also result in smoother convergence, as the gradient ...
GNU Classpath is a free software implementation of the standard class library for the Java programming language.Most classes from J2SE 1.4 and 5.0 are implemented. Classpath can thus be used to run Java-based applications.
Rprop can result in very large weight increments or decrements if the gradients are large, which is a problem when using mini-batches as opposed to full batches. RMSprop addresses this problem by keeping the moving average of the squared gradients for each weight and dividing the gradient by the square root of the mean square. [citation needed]
Almeida–Pineda recurrent backpropagation is an extension to the backpropagation algorithm that is applicable to recurrent neural networks. It is a type of supervised learning . It was described somewhat cryptically in Richard Feynman 's senior thesis, and rediscovered independently in the context of artificial neural networks by both Fernando ...
BlueJ implements the Blue environment design for the Java programming language. In March 2009, the BlueJ project became free and open source software, and licensed under GPL-2.0-or-later with the Classpath exception. BlueJ is currently being maintained by a team at King's College London, England, where Kölling works.