Search results
Results from the WOW.Com Content Network
In probability theory, the joint probability distribution is the probability distribution of all possible pairs of outputs of two random variables that are defined on the same probability space. The joint distribution can just as well be considered for any given number of random variables.
In probability theory and statistics, a copula is a multivariate cumulative distribution function for which the marginal probability distribution of each variable is uniform on the interval [0, 1]. Copulas are used to describe/model the dependence (inter-correlation) between random variables . [ 1 ]
To obtain the marginal distribution over a subset of multivariate normal random variables, one only needs to drop the irrelevant variables (the variables that one wants to marginalize out) from the mean vector and the covariance matrix. The proof for this follows from the definitions of multivariate normal distributions and linear algebra.
In statistics, an exchangeable sequence of random variables (also sometimes interchangeable) [1] is a sequence X 1, X 2, X 3, ... (which may be finitely or infinitely long) whose joint probability distribution does not change when the positions in the sequence in which finitely many of them appear are altered. In other words, the joint ...
This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.
The conditional probability distributions of each variable given its parents in G are assessed. In many cases, in particular in the case where the variables are discrete, if the joint distribution of X is the product of these conditional distributions, then X is a Bayesian network with respect to G. [21]
If the network structure of the model is a directed acyclic graph, the model represents a factorization of the joint probability of all random variables. More precisely, if the events are X 1 , … , X n {\displaystyle X_{1},\ldots ,X_{n}} then the joint probability satisfies
Using the standard formalism of probability theory, let and be two random variables defined on probability spaces (,,) and (,,).Then a coupling of and is a new probability space (,,) over which there are two random variables and such that has the same distribution as while has the same distribution as .