Search results
Results from the WOW.Com Content Network
The process flow diagram below depicts a typical semi-regenerative catalytic reforming unit. Schematic diagram of a typical semi-regenerative catalytic reformer unit in a petroleum refinery. The liquid feed (at the bottom left in the diagram) is pumped up to the reaction pressure (5–45 atm) and is joined by a stream of hydrogen-rich recycle gas.
Catalytic reforming usually utilizes a feedstock naphtha that contains non-aromatic hydrocarbons with 6 to 12 carbon atoms and typically produces a reformate product containing C 6 to C 8 aromatics (benzene, toluene, xylenes) as well as paraffins and heavier aromatics containing 9 to 12 carbon atoms.
This is a problem in the catalytic reforming of petroleum and the steam reforming of natural gas. The reaction is named after the French chemist, Octave Leopold Boudouard (1872–1923), who investigated this equilibrium in 1905. [6]
Fluid catalytic cracking (FCC) is the conversion process used in petroleum refineries to convert the high-boiling point, high-molecular weight hydrocarbon fractions of petroleum (crude oils) into gasoline, alkene gases, and other petroleum products.
A methane reformer is a device based on steam reforming, autothermal reforming or partial oxidation and is a type of chemical synthesis which can produce pure hydrogen gas from methane using a catalyst. There are multiple types of reformers in development but the most common in industry are autothermal reforming (ATR) and steam methane ...
Chemical looping systems can directly be engaged as an effective means for syngas production. Compared to the conventional partial oxidation (POX) or autothermal reforming (ATR) processes, the key advantage of the chemical looping reforming (CLR) process is the elimination of the air separation unit (ASU) for oxygen production. The gaseous fuel ...
Hydrodesulfurization or hydrodesulphurisation (Commonwealth English; see spelling differences) (HDS), also called hydrotreatment or hydrotreating, is a catalytic chemical process widely used to remove sulfur (S) from natural gas and from refined petroleum products, such as gasoline or petrol, jet fuel, kerosene, diesel fuel, and fuel oils.
Processes included the Lurgi Process, catalytic reforming, the catalytic rich gas process, steam reforming of rich gas, and the gas recycle hydrogenator process. [17] The catalytic rich gas process used natural gas as a feedstock to manufacture town gas. These facilities utilised the chemical reaction processes described above.