Search results
Results from the WOW.Com Content Network
In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1] In terms of a new quantity x − h {\displaystyle x-h} , this expression is a quadratic polynomial with no linear term.
Completing_the_square.ogv (Ogg Theora video file, length 1 min 9 s, 640 × 480 pixels, 758 kbps, file size: 6.22 MB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...
Finding a given Latin square's isomorphism class can be a difficult computational problem for squares of large order. To reduce the problem somewhat, a Latin square can always be put into a standard form known as a reduced square. A reduced square has its top row elements written in some natural order for the symbol set (for example, integers ...
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
These numbers can be calculated algebraically, as follows. If a pyramid of spheres is decomposed into its square layers with a square number of spheres in each, then the total number of spheres can be counted as the sum of the number of spheres in each square, = = = + + + +, and this summation can be solved to give a cubic polynomial, which can be written in several equivalent ways
Smith diagram of a rectangle. A "perfect" squared square is a square such that each of the smaller squares has a different size. Perfect squared squares were studied by R. L. Brooks, C. A. B. Smith, A. H. Stone and W. T. Tutte (writing under the collective pseudonym "Blanche Descartes") at Cambridge University between 1936 and 1938.
A Warnier/Orr diagram (also known as a logical construction of a program/system) is a kind of hierarchical flowchart that allows the description of the organization of data and procedures. They were initially developed 1976, [ 1 ] in France by Jean-Dominique Warnier [ 2 ] and in the United States by Kenneth Orr [ 3 ] on the foundation of ...