enow.com Web Search

  1. Ad

    related to: what is stochastic differential equation

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic differential equation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_differential...

    A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, [1] resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices , [ 2 ] random ...

  3. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary differential equations to stochastic differential equations named after Leonhard Euler and Gisiro Maruyama. The ...

  4. Differential equation - Wikipedia

    en.wikipedia.org/wiki/Differential_equation

    A stochastic differential equation (SDE) is an equation in which the unknown quantity is a stochastic process and the equation involves some known stochastic processes, for example, the Wiener process in the case of diffusion equations. A stochastic partial differential equation (SPDE) is an equation that generalizes SDEs to include space-time ...

  5. Supersymmetric theory of stochastic dynamics - Wikipedia

    en.wikipedia.org/wiki/Supersymmetric_Theory_of...

    Supersymmetric theory of stochastic dynamics or stochastics (STS) is an exact theory of stochastic (partial) differential equations (SDEs), the class of mathematical models with the widest applicability covering, in particular, all continuous time dynamical systems, with and without noise.

  6. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    Suppose we are given the stochastic differential equation = + , where B t is a Wiener process and the functions , are deterministic (not stochastic) functions of time. In general, it's not possible to write a solution X t {\displaystyle X_{t}} directly in terms of B t . {\displaystyle B_{t}.}

  7. Langevin equation - Wikipedia

    en.wikipedia.org/wiki/Langevin_equation

    In physics, a Langevin equation (named after Paul Langevin) is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison ...

  8. Milstein method - Wikipedia

    en.wikipedia.org/wiki/Milstein_method

    Consider the autonomous Itō stochastic differential equation: = + with initial condition =, where denotes the Wiener process, and suppose that we wish to solve this SDE on some interval of time [,]. Then the Milstein approximation to the true solution X {\displaystyle X} is the Markov chain Y {\displaystyle Y} defined as follows:

  9. Geometric Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Geometric_Brownian_motion

    A stochastic process S t is said to follow a GBM if it satisfies the following stochastic differential equation (SDE): = + where is a Wiener process or Brownian motion, and ('the percentage drift') and ('the percentage volatility') are constants.

  1. Ad

    related to: what is stochastic differential equation