Search results
Results from the WOW.Com Content Network
The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.
The moment of inertia depends on how mass is distributed around an axis of rotation, and will vary depending on the chosen axis. For a point-like mass, the moment of inertia about some axis is given by , where is the distance of the point from the axis, and is the mass. For an extended rigid body, the moment of inertia is just the sum of all ...
The moment of inertia is the 2nd moment of mass: = for a point mass, for a collection of point masses, or () for an object with mass distribution (). The center of mass is often (but not always) taken as the reference point.
The moment of inertia about an axis is a measurement of how difficult it is to accelerate the body about that axis. The closer the concentration of mass to the axis, the smaller the torque required to get it spinning at the same rate about that axis. The moment of inertia of a body depends on the mass distribution of the body and on the ...
The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation , in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. [1]
In classical mechanics, the stretch rule (sometimes referred to as Routh's rule) states that the moment of inertia of a rigid object is unchanged when the object is stretched parallel to an axis of rotation that is a principal axis, provided that the distribution of mass remains unchanged except in the direction parallel to the axis. [1]
Similarly, for a point mass the moment of inertia is defined as, = where is the radius of the point mass from the center of rotation, and for any collection of particles as the sum, =. Angular momentum's dependence on position and shape is reflected in its units versus linear momentum: kg⋅m 2 /s or N⋅m⋅s for angular momentum versus kg⋅m ...
For typical applications in nuclear physics, where one particle's mass is much larger than the other the reduced mass can be approximated as the smaller mass of the system. The limit of the reduced mass formula as one mass goes to infinity is the smaller mass, thus this approximation is used to ease calculations, especially when the larger ...