Search results
Results from the WOW.Com Content Network
The moment of inertia depends on how mass is distributed around an axis of rotation, and will vary depending on the chosen axis. For a point-like mass, the moment of inertia about some axis is given by , where is the distance of the point from the axis, and is the mass. For an extended rigid body, the moment of inertia is just the sum of all ...
The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.
Similarly, for a point mass the moment of inertia is defined as, = where is the radius of the point mass from the center of rotation, and for any collection of particles as the sum, =. Angular momentum's dependence on position and shape is reflected in its units versus linear momentum: kg⋅m 2 /s or N⋅m⋅s for angular momentum versus kg⋅m ...
The second polar moment of area, also known (incorrectly, colloquially) as "polar moment of inertia" or even "moment of inertia", is a quantity used to describe resistance to torsional deformation , in objects (or segments of an object) with an invariant cross-section and no significant warping or out-of-plane deformation. [1]
The moment of inertia is the 2nd moment of mass: = for a point mass, for a collection of point masses, or () for an object with mass distribution (). The center of mass is often (but not always) taken as the reference point.
where F is the resultant force acting on the body and a is the acceleration of the body's centre of mass. [note 8] For the moment, we will put aside the question of what "force acting on the body" actually means. This equation illustrates how mass relates to the inertia of a body. Consider two objects with different masses.
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]
The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J. Part of the Earth's rotational energy can also be tapped using tidal power. Additional friction of the two global tidal waves creates energy in a physical manner, infinitesimally slowing down Earth's angular ...