enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    A comparison between the L1 ball and the L2 ball in two dimensions gives an intuition on how L1 regularization achieves sparsity. Enforcing a sparsity constraint on can lead to simpler and more interpretable models. This is useful in many real-life applications such as computational biology. An example is developing a simple predictive test for ...

  3. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    In many cases, this matrix is chosen as a scalar multiple of the identity matrix (=), giving preference to solutions with smaller norms; this is known as L 2 regularization. [20] In other cases, high-pass operators (e.g., a difference operator or a weighted Fourier operator ) may be used to enforce smoothness if the underlying vector is ...

  4. Lasso (statistics) - Wikipedia

    en.wikipedia.org/wiki/Lasso_(statistics)

    In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso, LASSO or L1 regularization) [1] is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model.

  5. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    Techniques which use an L1 penalty, like LASSO, encourage sparse solutions (where the many parameters are zero). [14] Elastic net regularization uses a penalty term that is a combination of the L 1 {\displaystyle L^{1}} norm and the squared L 2 {\displaystyle L^{2}} norm of the parameter vector.

  6. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    This regularization function, while attractive for the sparsity that it guarantees, is very difficult to solve because doing so requires optimization of a function that is not even weakly convex. Lasso regression is the minimal possible relaxation of ℓ 0 {\displaystyle \ell _{0}} penalization that yields a weakly convex optimization problem.

  7. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    It was proven in 2014 that the elastic net can be reduced to the linear support vector machine. [7] A similar reduction was previously proven for the LASSO in 2014. [8] The authors showed that for every instance of the elastic net, an artificial binary classification problem can be constructed such that the hyper-plane solution of a linear support vector machine (SVM) is identical to the ...

  8. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    Regularization by spectral filtering has been used to find stable solutions to problems such as those discussed above by addressing ill-posed matrix inversions (see for example Filter function for Tikhonov regularization). In many cases the regularization function acts on the input (or kernel) to ensure a bounded inverse by eliminating small ...

  9. Huber loss - Wikipedia

    en.wikipedia.org/wiki/Huber_loss

    The scale at which the Pseudo-Huber loss function transitions from L2 loss for values close to the minimum to L1 loss for extreme values and the steepness at extreme values can be controlled by the value. The Pseudo-Huber loss function ensures that derivatives are continuous for all degrees. It is defined as [3] [4]