Search results
Results from the WOW.Com Content Network
An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the constituent components of this circuit, where the sequence of the components may vary from RLC.
An RLC circuit (or LCR circuit) is an electrical circuit consisting of a resistor, an inductor, and a capacitor, connected in series or in parallel. The RLC part of the name is due to those letters being the usual electrical symbols for resistance, inductance and capacitance respectively. The circuit forms a harmonic oscillator for current and ...
A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. [1] A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source.
In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [1] In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents flowing through each ...
The RLC circuit example in the next section gives examples of different resonant frequencies for the same system. The general solution of Equation ( 2 ) is the sum of a transient solution that depends on initial conditions and a steady state solution that is independent of initial conditions and depends only on the driving amplitude F 0 ...
An example of this is the network of figure 1.6, consisting of a Y network connected in parallel with a Δ network. Say it is desired to calculate the impedance between two nodes of the network. In many networks this can be done by successive applications of the rules for combination of series or parallel impedances.
Norton's theorem and its dual, Thévenin's theorem, are widely used for circuit analysis simplification and to study circuit's initial-condition and steady-state response. Norton's theorem was independently derived in 1926 by Siemens & Halske researcher Hans Ferdinand Mayer (1895–1980) and Bell Labs engineer Edward Lawry Norton (1898–1983).
The simplest system in which antiresonance arises is a system of coupled harmonic oscillators, for example pendula or RLC circuits. Consider two harmonic oscillators coupled together with strength g and with one oscillator driven by an oscillating external force F. The situation is described by the coupled ordinary differential equations