Search results
Results from the WOW.Com Content Network
The parameters of the LNP model consist of the linear filters {} and the nonlinearity . The estimation problem (also known as the problem of neural characterization) is the problem of determining these parameters from data consisting of a time-varying stimulus and the set of observed spike times. Techniques for estimating the LNP model ...
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
The formal definition of the bottleneck assignment problem is Given two sets, A and T, together with a weight function C : A × T → R. Find a bijection f : A → T such that the cost function: (, ()) is minimized.
An early example of answer set programming was the planning method proposed in 1997 by Dimopoulos, Nebel and Köhler. [3] [4] Their approach is based on the relationship between plans and stable models. [5] In 1998 Soininen and Niemelä [6] applied what is now known as answer set programming to the problem of product configuration. [4]
Selective organ targeting (SORT) is a novel approach in the field of targeted drug delivery that systematically engineers multiple classes of lipid nanoparticles (LNPs) to enable targeted delivery of therapeutics to specific organs in the body.
Written in C++ and published under an MIT license, HiGHS provides programming interfaces to C, Python, Julia, Rust, R, JavaScript, Fortran, and C#. It has no external dependencies. A convenient thin wrapper to Python is available via the highspy PyPI package. Although generally single-threaded, some solver components can utilize multi-core ...
An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers.In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear.
In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...