Search results
Results from the WOW.Com Content Network
The Stability of Matter: From Atoms to Stars. Selecta of Elliott H. Lieb. Edited by W. Thirring, and with a preface by F. Dyson. Fourth edition. Springer, Berlin, 2005. Elliott H. Lieb and Robert Seiringer, The Stability of Matter in Quantum Mechanics. Cambridge Univ. Press, 2010. Elliott H. Lieb, The stability of matter: from atoms to stars ...
An even number of protons or neutrons is more stable (higher binding energy) because of pairing effects, so even–even nuclides are much more stable than odd–odd. One effect is that there are few stable odd–odd nuclides: in fact only five are stable, with another four having half-lives longer than a billion years.
Strange matter: A type of quark matter that may exist inside some neutron stars close to the Tolman–Oppenheimer–Volkoff limit (approximately 2–3 solar masses). May be stable at lower energy states once formed. Quark matter: Hypothetical phases of matter whose degrees of freedom include quarks and gluons Color-glass condensate
In heavier nuclei, larger numbers of uncharged neutrons are needed to reduce repulsion and confer additional stability. Even so, as physicists started to synthesize elements that are not found in nature, they found the stability decreased as the nuclei became heavier. [17] Thus, they speculated that the periodic table might come to an end.
For example, the stability of bulk matter (consisting of atoms and molecules which would quickly collapse under electric forces alone), the rigidity of solids, and the mechanical, thermal, chemical, optical and magnetic properties of matter are all results of the interaction of electric charges under the rules of quantum mechanics. [43]
In regular cold matter, quarks, fundamental particles of nuclear matter, are confined by the strong force into hadrons that consist of 2–4 quarks, such as protons and neutrons. Quark matter or quantum chromodynamical (QCD) matter is a group of phases where the strong force is overcome and quarks are deconfined and free to move.
Of primary importance in the analysis of stability in particle suspensions is the value of the zeta potential exhibited by suspended solids. This parameter indicates the magnitude of interparticle electrostatic repulsion and is commonly analyzed to determine how the use of adsorbates and pH modification affect particle repulsion and suspension ...
In chemistry, chemical stability is the thermodynamic stability of a chemical system, in particular a chemical compound or a polymer. [1]Chemical stability may also refer to the shelf-life of a particular chemical compound; that is the duration of time before it begins to degrade in response to environmental factors.