enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Comparing this equation to equation , it follows immediately that a left eigenvector of is the same as the transpose of a right eigenvector of , with the same eigenvalue. Furthermore, since the characteristic polynomial of A T {\displaystyle A^{\textsf {T}}} is the same as the characteristic polynomial of A {\displaystyle A} , the left and ...

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Once the eigenvalues are computed, the eigenvectors could be calculated by solving the equation (), = using Gaussian elimination or any other method for solving matrix equations. However, in practical large-scale eigenvalue methods, the eigenvectors are usually computed in other ways, as a byproduct of the eigenvalue computation.

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  5. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    When the eigenvalues (and eigenvectors) of a symmetric matrix are known, the following values are easily calculated. Singular values The singular values of a (square) matrix A {\displaystyle A} are the square roots of the (non-negative) eigenvalues of A T A {\displaystyle A^{T}A} .

  6. Lanczos algorithm - Wikipedia

    en.wikipedia.org/wiki/Lanczos_algorithm

    The Lanczos algorithm is most often brought up in the context of finding the eigenvalues and eigenvectors of a matrix, but whereas an ordinary diagonalization of a matrix would make eigenvectors and eigenvalues apparent from inspection, the same is not true for the tridiagonalization performed by the Lanczos algorithm; nontrivial additional steps are needed to compute even a single eigenvalue ...

  7. Characteristic polynomial - Wikipedia

    en.wikipedia.org/wiki/Characteristic_polynomial

    The characteristic equation, also known as the determinantal equation, [1] [2] [3] is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory , the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix .

  8. QR algorithm - Wikipedia

    en.wikipedia.org/wiki/QR_algorithm

    In numerical linear algebra, the QR algorithm or QR iteration is an eigenvalue algorithm: that is, a procedure to calculate the eigenvalues and eigenvectors of a matrix.The QR algorithm was developed in the late 1950s by John G. F. Francis and by Vera N. Kublanovskaya, working independently.

  9. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    The surviving diagonal elements, ,, are known as eigenvalues and designated with in the defining equation, which reduces to =. The resulting equation is known as eigenvalue equation . [ 5 ] The eigenvectors and eigenvalues are derived from it via the characteristic polynomial .