Search results
Results from the WOW.Com Content Network
The fast marching method [1] is a numerical method created by James Sethian for solving boundary value problems of the Eikonal equation: | | = / () =Typically, such a problem describes the evolution of a closed surface as a function of time with speed in the normal direction at a point on the propagating surface.
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
The Hata model is a radio propagation model for predicting the path loss of cellular transmissions in exterior environments, valid for microwave frequencies from 150 to 1500 MHz. It is an empirical formulation based on the data from the Okumura model , and is thus also commonly referred to as the Okumura–Hata model . [ 1 ]
Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs.
The SGP4 and SDP4 models were published along with sample code in FORTRAN IV in 1988 with refinements over the original model to handle the larger number of objects in orbit since. SGP8/SDP8 introduced additional improvements for handling orbital decay .
Propagation of a ray through a layer. The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [1] [2] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors.
The statistical estimates or attenuation variables of this prediction model are: I) Situation variability (Ys); II) Time variability (Yt); II) Location variability (YL). The reference attenuation (W) is determined as a function of the distance, attenuation variables and an urban factor for an area or point-to-point.
As one example, if there is free space between the two planes, the ray transfer matrix is given by: = [], where d is the separation distance (measured along the optical axis) between the two reference planes.