enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hendrik Lorentz - Wikipedia

    en.wikipedia.org/wiki/Hendrik_Lorentz

    Painting of Hendrik Lorentz by Menso Kamerlingh Onnes, 1916 Portrait by Jan Veth Lorentz' theory of electrons. Formulas for the Lorentz force (I) and the Maxwell equations for the divergence of the electrical field E (II) and the magnetic field B (III), La théorie electromagnétique de Maxwell et son application aux corps mouvants, 1892, p. 451.

  3. Lorentz transformation - Wikipedia

    en.wikipedia.org/wiki/Lorentz_transformation

    From the invariance of the spacetime interval it follows = and this matrix equation contains the general conditions on the Lorentz transformation to ensure invariance of the spacetime interval. Taking the determinant of the equation using the product rule [ nb 4 ] gives immediately [ det ( Λ ) ] 2 = 1 ⇒ det ( Λ ) = ± 1 {\displaystyle \left ...

  4. Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Lorentz_force

    Lorentz force acting on fast-moving charged particles in a bubble chamber.Positive and negative charge trajectories curve in opposite directions. In physics, specifically in electromagnetism, the Lorentz force law is the combination of electric and magnetic force on a point charge due to electromagnetic fields.

  5. Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Lorentz_group

    In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry:

  6. Lorentz factor - Wikipedia

    en.wikipedia.org/wiki/Lorentz_factor

    The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations.

  7. Lorentz ether theory - Wikipedia

    en.wikipedia.org/wiki/Lorentz_ether_theory

    Hendrik Lorentz. The Lorentz ether theory, which was developed mainly between 1892 and 1906 by Lorentz and Poincaré, was based on the aether theory of Augustin-Jean Fresnel, Maxwell's equations and the electron theory of Rudolf Clausius.

  8. Postulates of special relativity - Wikipedia

    en.wikipedia.org/wiki/Postulates_of_special...

    Historically, Hendrik Lorentz and Henri Poincaré (1892–1905) derived the Lorentz transformation from Maxwell's equations, which served to explain the negative result of all aether drift measurements.

  9. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form: