Search results
Results from the WOW.Com Content Network
A B-tree of depth n+1 can hold about U times as many items as a B-tree of depth n, but the cost of search, insert, and delete operations grows with the depth of the tree. As with any balanced tree, the cost grows much more slowly than the number of elements.
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
Throughout insertion/deletion operations, the K-D-B-tree maintains a certain set of properties: The graph is a multi-way tree. Region pages always point to child pages, and can not be empty. Point pages are the leaf nodes of the tree. Like a B-tree, the path length to the leaves of the tree is the same for all queries.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
This is achieved by the rule: at most one child can be cut off each non-root node. When a second child is cut, the node itself needs to be cut from its parent and becomes the root of a new tree (see Proof of degree bounds, below). The number of trees is decreased in the operation delete-min, where trees are linked together.
2–3–4 trees are B-trees of order 4; [1] like B-trees in general, they can search, insert and delete in O(log n) time. One property of a 2–3–4 tree is that all external nodes are at the same depth. 2–3–4 trees are closely related to red–black trees by interpreting red links (that is, links to red children) as internal links of 3 ...
A simple B+ tree example linking the keys 1–7 to data values d 1-d 7. The linked list (red) allows rapid in-order traversal. This particular tree's branching factor is =4. Both keys in leaf and internal nodes are colored gray here. By definition, each value contained within the B+ tree is a key contained in exactly one leaf node.
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...