enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inviscid flow - Wikipedia

    en.wikipedia.org/wiki/Inviscid_flow

    In fluid dynamics, inviscid flow is the flow of an inviscid fluid which is a fluid with zero viscosity. [1] The Reynolds number of inviscid flow approaches infinity as the viscosity approaches zero. When viscous forces are neglected, such as the case of inviscid flow, the Navier–Stokes equation can be simplified to a form known as the Euler ...

  3. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    Thus for an incompressible inviscid fluid the specific internal energy is constant along the flow lines, also in a time-dependent flow. The pressure in an incompressible flow acts like a Lagrange multiplier , being the multiplier of the incompressible constraint in the energy equation, and consequently in incompressible flows it has no ...

  4. Potential flow - Wikipedia

    en.wikipedia.org/wiki/Potential_flow

    In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it. Such a description typically arises in the limit of vanishing viscosity , i.e., for an inviscid fluid and with no vorticity present in the flow.

  5. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    The irrotational (core) flow region: The region in which viscous effects and velocity changes are negligible, also known as the inviscid core. [ 2 ] When the fluid just enters the pipe, the thickness of the boundary layer gradually increases from zero moving in the direction of fluid flow and eventually reaches the pipe center and fills the ...

  6. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    Therefore, to calculate net forces on bodies (such as wings), viscous flow equations must be used: inviscid flow theory fails to predict drag forces, a limitation known as the d'Alembert's paradox. A commonly used [ 6 ] model, especially in computational fluid dynamics , is to use two flow models: the Euler equations away from the body, and ...

  7. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    A key tool used to determine the stability of a flow is the Reynolds number (Re), first put forward by George Gabriel Stokes at the start of the 1850s. Associated with Osborne Reynolds who further developed the idea in the early 1880s, this dimensionless number gives the ratio of inertial terms and viscous terms. [4]

  8. Laplace equation for irrotational flow - Wikipedia

    en.wikipedia.org/wiki/Laplace_equation_for...

    And then using the continuity equation =, the scalar potential can be substituted back in to find Laplace's Equation for irrotational flow: ∇ 2 ϕ = 0 {\displaystyle \nabla ^{2}\phi =0\,} Note that the Laplace equation is a well-studied linear partial differential equation.

  9. Airy wave theory - Wikipedia

    en.wikipedia.org/wiki/Airy_wave_theory

    The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.