Search results
Results from the WOW.Com Content Network
The sum of the reciprocals of the cubes of positive integers is called Apéry's constant ζ(3) , and equals approximately 1.2021 . This number is irrational, but it is not known whether or not it is transcendental. The reciprocals of the non-negative integer powers of 2 sum to 2 . This is a particular case of the sum of the reciprocals of any ...
For example, 3 is the only prime with period 1, 11 is the only prime with period 2, 37 is the only prime with period 3, 101 is the only prime with period 4, so they are unique primes. The next larger unique prime is 9091 with period 10, though the next larger period is 9 (its prime being 333667).
The reciprocal function: y = 1/x.For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.
By this construction, the function that defines the harmonic number for complex values is the unique function that simultaneously satisfies (1) H 0 = 0, (2) H x = H x−1 + 1/x for all complex numbers x except the non-positive integers, and (3) lim m→+∞ (H m+x − H m) = 0 for all complex values x.
Some reciprocals of primes that do not generate cyclic numbers are: 1 / 3 = 0. 3, which has a period (repetend length) of 1. 1 / 11 = 0. 09, which has a period of two. 1 / 13 = 0. 076923, which has a period of six. 1 / 31 = 0. 032258064516129, which has a period of 15. 1 / 37 = 0. 027, which has a period ...
Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x 3 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x 3 ≡ p (mod q) is solvable if and only if ...
While the partial sums of the reciprocals of the primes eventually exceed any integer value, they never equal an integer. One proof [6] is by induction: The first partial sum is 1 / 2 , which has the form odd / even . If the n th partial sum (for n ≥ 1) has the form odd / even , then the (n + 1) st sum is
The red line shows that the harmonic mean of a number and its negative is undefined as the line does not intersect the z axis. For the special case of just two numbers, x 1 {\displaystyle x_{1}} and x 2 {\displaystyle x_{2}} , the harmonic mean can be written as: [ 4 ]