Search results
Results from the WOW.Com Content Network
The sum of the reciprocals of the cubes of positive integers is called Apéry's constant ζ(3) , and equals approximately 1.2021 . This number is irrational, but it is not known whether or not it is transcendental. The reciprocals of the non-negative integer powers of 2 sum to 2 . This is a particular case of the sum of the reciprocals of any ...
For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).
A prime p (where p ≠ 2, 5 when working in base 10) is called unique if there is no other prime q such that the period length of the decimal expansion of its reciprocal, 1/p, is equal to the period length of the reciprocal of q, 1/q. [8]
The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.
Then if we denote the lengths of the parallel sides as a and b and half the length of the segment through the diagonal intersection as c, the sum of the reciprocals of a and b equals the reciprocal of c. [4] The special case in which the integers whose reciprocals are taken must be square numbers appears in two ways in the context of right ...
The reciprocals of prime numbers produce a divergent series (so the set of primes is "large"; see divergence of the sum of the reciprocals of the primes): 1 2 + 1 3 + 1 5 + 1 7 + 1 11 + 1 13 + ⋯ → ∞ . {\displaystyle {1 \over 2}+{1 \over 3}+{1 \over 5}+{1 \over 7}+{1 \over 11}+{1 \over 13}+\cdots \rightarrow \infty .}
In terms of dollars, the value of a coin rises in a deflationary system, all else equal. So cryptocurrencies often want to show that they have deflationary tokenomics to help support the coin price.
Pythagorean quadruples are sets of four integers such that the sum of the squares of the first three equals the square of the fourth. The Basel problem, solved by Euler in terms of , asked for an exact expression for the sum of the squares of the reciprocals of all positive integers.