enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix addition - Wikipedia

    en.wikipedia.org/wiki/Matrix_addition

    In mathematics, matrix addition is the operation of adding two matrices by adding the corresponding entries together. For a vector , v → {\displaystyle {\vec {v}}\!} , adding two matrices would have the geometric effect of applying each matrix transformation separately onto v → {\displaystyle {\vec {v}}\!} , then adding the transformed vectors.

  3. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Others, such as matrix addition, scalar multiplication, matrix multiplication, and row operations involve operations on matrix entries and therefore require that matrix entries are numbers or belong to a field or a ring. [8] In this section, it is supposed that matrix entries belong to a fixed ring, which is typically a field of numbers.

  4. Conformable matrix - Wikipedia

    en.wikipedia.org/wiki/Conformable_matrix

    Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. That is, if A is an m × n matrix and B is an s × p matrix, then n needs to be equal to s for the matrix product AB to be defined.

  5. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as an matrix made up of complex numbers. For an explanation of the notation used here, we begin by representing complex numbers e i θ {\displaystyle e^{i\theta }} as the rotation matrix, that is,

  6. Frobenius inner product - Wikipedia

    en.wikipedia.org/wiki/Frobenius_inner_product

    In mathematics, the Frobenius inner product is a binary operation that takes two matrices and returns a scalar.It is often denoted , .The operation is a component-wise inner product of two matrices as though they are vectors, and satisfies the axioms for an inner product.

  7. Matrix ring - Wikipedia

    en.wikipedia.org/wiki/Matrix_ring

    A subring of a matrix ring is again a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring M n (R) is an associative algebra over R, and may be called a matrix algebra. In this setting, if M is a matrix and r is in R, then the matrix rM is the matrix M with each of its entries multiplied by r.

  8. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    The scalar matrices are the center of the algebra of matrices: that is, they are precisely the matrices that commute with all other square matrices of the same size. [ a ] By contrast, over a field (like the real numbers), a diagonal matrix with all diagonal elements distinct only commutes with diagonal matrices (its centralizer is the set of ...

  9. Block matrix - Wikipedia

    en.wikipedia.org/wiki/Block_matrix

    In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. [1] [2]Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices.