Search results
Results from the WOW.Com Content Network
The first paper that has "non-Hermitian quantum mechanics" in the title was published in 1996 [1] by Naomichi Hatano and David R. Nelson. The authors mapped a classical statistical model of flux-line pinning by columnar defects in high-T c superconductors to a quantum model by means of an inverse path-integral mapping and ended up with a non-Hermitian Hamiltonian with an imaginary vector ...
For non-Hermitian quantum systems with PT symmetry, fidelity can be used to analyze whether exceptional points are of higher-order. Many numerical methods such as the Lanczos algorithm , Density Matrix Renormalization Group (DMRG), and other tensor network algorithms are relatively easy to calculate only for the ground state, but have many ...
Carl M Bender and Stefan Boettcher, "Real Spectra in non-Hermitian Hamiltonians Having PT Symmetry," Physical Review Letters 80, 5243 (1998). Carl M Bender, "Making Sense of Non-Hermitian Hamiltonians," Reports on Progress in Physics 70, 947 (2007).
In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz. For example, the following laws, equations, and theories respect Lorentz symmetry:
In quantum electrodynamics, the local symmetry group is U(1) and is abelian. In quantum chromodynamics, the local symmetry group is SU(3) and is non-abelian. The electromagnetic interaction is mediated by photons, which have no electric charge. The electromagnetic tensor has an electromagnetic four-potential field possessing gauge symmetry.
In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge conjugation symmetry) and P-symmetry (parity symmetry). CP-symmetry states that the laws of physics should be the same if a particle is interchanged with its antiparticle (C-symmetry) while its spatial ...
Therefore, the global Poincaré symmetry, consisting of translational symmetry, rotational symmetry and the inertial reference frame invariance central to the theory of special relativity must apply. The local SU(3) × SU(2) × U(1) gauge symmetry is the internal symmetry. The three factors of the gauge symmetry together give rise to the three ...
All known fundamental interactions can be described in terms of gauge theories, but working this out took decades. [2] Hermann Weyl's pioneering work on this project started in 1915 when his colleague Emmy Noether proved that every conserved physical quantity has a matching symmetry, and culminated in 1928 when he published his book applying the geometrical theory of symmetry (group theory) to ...