Search results
Results from the WOW.Com Content Network
Although extremely high values of damping factor in an amplifier will not necessarily make the loudspeaker–amplifier combination sound better, [10] a high damping factor can serve to reduce the intensity of added frequency response variations that are undesirable. The figure on the right shows the effect of damping factor on the frequency ...
Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes [4] (ex. Suspension (mechanics)). Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping.
A wide band filter requires high damping. Q factor. The Q factor is a widespread measure used to characterise resonators. It is defined as the peak energy stored in ...
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
Damping capacity is a mechanical property of materials that measure a material's ability to dissipate elastic strain energy during mechanical vibration or wave propagation. When ranked according to damping capacity, materials may be roughly categorized as either high- or low-damping.
The amplifier damping factor, which is the ratio of the nominal load impedance (driver voice coil) to amplifier output impedance, is adequate in either case for well-designed solid state amplifiers. Tube amplifiers have sufficiently higher output impedances that they normally included multi-tap output transformers to better match to the driver ...
There is no unit designation for transmissibility, although it may sometimes be referred to as the Q factor. The transmissibility is used in calculation of passive hon efficiency. The lesser the transmissibility the better is the damping or the isolation system.
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.