enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    This graph becomes disconnected when the right-most node in the gray area on the left is removed This graph becomes disconnected when the dashed edge is removed.. In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more ...

  3. k-edge-connected graph - Wikipedia

    en.wikipedia.org/wiki/K-edge-connected_graph

    In graph theory, a connected graph is k-edge-connected if it remains connected whenever fewer than k edges are removed. The edge-connectivity of a graph is the largest k for which the graph is k-edge-connected. Edge connectivity and the enumeration of k-edge-connected graphs was studied by Camille Jordan in 1869. [1]

  4. k-vertex-connected graph - Wikipedia

    en.wikipedia.org/wiki/K-vertex-connected_graph

    The vertex-connectivity of an input graph G can be computed in polynomial time in the following way [4] consider all possible pairs (,) of nonadjacent nodes to disconnect, using Menger's theorem to justify that the minimal-size separator for (,) is the number of pairwise vertex-independent paths between them, encode the input by doubling each vertex as an edge to reduce to a computation of the ...

  5. Menger's theorem - Wikipedia

    en.wikipedia.org/wiki/Menger's_theorem

    The edge-connectivity version of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two distinct vertices. Then the size of the minimum edge cut for x and y (the minimum number of edges whose removal disconnects x and y) is equal to the maximum number of pairwise edge-disjoint paths from x to y.

  6. Grinberg's theorem - Wikipedia

    en.wikipedia.org/wiki/Grinberg's_theorem

    Grinberg used his theorem to find non-Hamiltonian cubic polyhedral graphs with high cyclic edge connectivity. The cyclic edge connectivity of a graph is the smallest number of edges whose deletion leaves a subgraph with more than one cyclic component. The 46-vertex Tutte graph, and the smaller cubic non-Hamiltonian polyhedral graphs derived from it

  7. Dynamic connectivity - Wikipedia

    en.wikipedia.org/wiki/Dynamic_connectivity

    In computing and graph theory, a dynamic connectivity structure is a data structure that dynamically maintains information about the connected components of a graph. The set V of vertices of the graph is fixed, but the set E of edges can change. The three cases, in order of difficulty, are:

  8. Robbins' theorem - Wikipedia

    en.wikipedia.org/wiki/Robbins'_theorem

    An extension of Robbins' theorem to mixed graphs by Boesch & Tindell (1980) shows that, if G is a graph in which some edges may be directed and others undirected, and G contains a path respecting the edge orientations from every vertex to every other vertex, then any undirected edge of G that is not a bridge may be made directed without changing the connectivity of G.

  9. Vertex-transitive graph - Wikipedia

    en.wikipedia.org/wiki/Vertex-transitive_graph

    The edge-connectivity of a connected vertex-transitive graph is equal to the degree d, while the vertex-connectivity will be at least 2(d + 1)/3. [1] If the degree is 4 or less, or the graph is also edge-transitive, or the graph is a minimal Cayley graph, then the vertex-connectivity will also be equal to d. [4]