enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The NavierStokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    The cross differentiated NavierStokes equation becomes two 0 = 0 equations and one meaningful equation. The remaining component ψ 3 = ψ is called the stream function. The equation for ψ can simplify since a variety of quantities will now equal zero, for example:

  4. SIMPLE algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLE_algorithm

    In computational fluid dynamics (CFD), the SIMPLE algorithm is a widely used numerical procedure to solve the NavierStokes equations. SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early ...

  5. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_existence...

    For example, the NavierStokes equations are often used to model fluid flows that are turbulent, which means that the fluid is highly chaotic and unpredictable. Turbulence is a difficult phenomenon to model and understand, and it adds another layer of complexity to the problem of solving the NavierStokes equations.

  6. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    However, theoretical understanding of their solutions is incomplete, despite its importance in science and engineering. For the three-dimensional system of equations, and given some initial conditions, mathematicians have not yet proven that smooth solutions always exist. This is called the NavierStokes existence and smoothness problem.

  7. Projection method (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Projection_method_(fluid...

    In computational fluid dynamics, the projection method, also called Chorin's projection method, is an effective means of numerically solving time-dependent incompressible fluid-flow problems. It was originally introduced by Alexandre Chorin in 1967 [1] [2] as an efficient means of solving the incompressible Navier-Stokes equations.

  8. SIMPLEC algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLEC_algorithm

    The SIMPLEC (Semi-Implicit Method for Pressure Linked Equations-Consistent) algorithm; a modified form of SIMPLE algorithm; is a commonly used numerical procedure in the field of computational fluid dynamics to solve the NavierStokes equations. This algorithm was developed by Van Doormal and Raithby in 1984.

  9. Stokes flow - Wikipedia

    en.wikipedia.org/wiki/Stokes_flow

    The equation of motion for Stokes flow can be obtained by linearizing the steady state NavierStokes equations.The inertial forces are assumed to be negligible in comparison to the viscous forces, and eliminating the inertial terms of the momentum balance in the NavierStokes equations reduces it to the momentum balance in the Stokes equations: [1]