Search results
Results from the WOW.Com Content Network
Together, the incremental changes throughout the process, and the initial and final states, fully determine the idealized process. In the most commonly cited simple example, an ideal gas, the thermodynamic variables would be any three variables out of the following four: amount of substance, pressure, temperature, and volume. Thus, the ...
It also gave rise to theoretical work to determine the equation of state, that is to say the relations among the different parameters that define in this case the state of matter: the volume (or density), temperature and pressure. There are two approaches: the state equations derived from interatomic potentials, or possibly ab initio calculations;
(The heat change at constant pressure is called the enthalpy change; in this case the widely tabulated enthalpies of formation are used.) A related term is the heat of combustion, which is the chemical energy released due to a combustion reaction and of interest in the study of fuels.
Also acid ionization constant or acidity constant. A quantitative measure of the strength of an acid in solution expressed as an equilibrium constant for a chemical dissociation reaction in the context of acid-base reactions. It is often given as its base-10 cologarithm, p K a. acid–base extraction A chemical reaction in which chemical species are separated from other acids and bases. acid ...
absolute pressure Is zero-referenced against a perfect vacuum, using an absolute scale, so it is equal to gauge pressure plus atmospheric pressure. absolute scale Any system of measurement that begins at a minimum, or zero point, and progresses in only one direction. The zero point of an absolute scale is a natural minimum, leaving only one ...
Figure 1: Thermal pressure as a function of temperature normalized to A of the few compounds commonly used in the study of Geophysics. [3]The thermal pressure coefficient can be considered as a fundamental property; it is closely related to various properties such as internal pressure, sonic velocity, the entropy of melting, isothermal compressibility, isobaric expansibility, phase transition ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
An isobaric process occurs at constant pressure. An example would be to have a movable piston in a cylinder, so that the pressure inside the cylinder is always at atmospheric pressure, although it is separated from the atmosphere. In other words, the system is dynamically connected, by a movable boundary, to a constant-pressure reservoir.