Search results
Results from the WOW.Com Content Network
The code above will execute at run time to determine the factorial value of the literals 0 and 4. By using template metaprogramming and template specialization to provide the ending condition for the recursion, the factorials used in the program—ignoring any factorial not used—can be calculated at compile time by this code:
Anonymous recursion can also be used for named functions, rather that calling them by name, say to specify that one is recursing on the current function, or to allow one to rename the function without needing to change the name where it calls itself. However, as a matter of programming style this is generally not done.
A classic example of recursion is computing the factorial, which is defined recursively by 0! := 1 and n! := n × (n - 1)!.. To recursively compute its result on a given input, a recursive function calls (a copy of) itself with a different ("smaller" in some way) input and uses the result of this call to construct its result.
The recursive program above is tail-recursive; it is equivalent to an iterative algorithm, and the computation shown above shows the steps of evaluation that would be performed by a language that eliminates tail calls. Below is a version of the same algorithm using explicit iteration, suitable for a language that does not eliminate tail calls.
function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...
A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...
An example of a primitive recursive programming language is one that contains basic arithmetic operators (e.g. + and −, or ADD and SUBTRACT), conditionals and comparison (IF-THEN, EQUALS, LESS-THAN), and bounded loops, such as the basic for loop, where there is a known or calculable upper bound to all loops (FOR i FROM 1 TO n, with neither i ...
If the programmer desires the recursive callable to use the same variables instead of using locals, they typically declare them in a shared context such static or global. Languages going back to ALGOL , PL/I and C and modern languages, almost invariably use a call stack, usually supported by the instruction sets to provide an activation record ...