enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    The intersection point falls within the first line segment if 0 ≤ t ≤ 1, and it falls within the second line segment if 0 ≤ u ≤ 1. These inequalities can be tested without the need for division, allowing rapid determination of the existence of any line segment intersection before calculating its exact point. [3]

  3. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    Let l 1 = [a 1, b 1, c 1] and l 2 = [a 2, b 2, c 2] be a pair of distinct lines. Then the intersection of lines l 1 and l 2 is point a P = (x 0, y 0, z 0) that is the simultaneous solution (up to a scalar factor) of the system of linear equations: a 1 x + b 1 y + c 1 z = 0 and a 2 x + b 2 y + c 2 z = 0. The solution of this system gives: x 0 ...

  4. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    If one wants to determine the intersection points of two polygons, one can check the intersection of any pair of line segments of the polygons (see above). For polygons with many segments this method is rather time-consuming. In practice one accelerates the intersection algorithm by using window tests. In this case one divides the polygons into ...

  5. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    In any affine space (including a Euclidean space) the set of lines parallel to a given line (sharing the same direction) is also called a pencil, and the vertex of each pencil of parallel lines is a distinct point at infinity; including these points results in a projective space in which every pair of lines has an intersection.

  6. Intersection - Wikipedia

    en.wikipedia.org/wiki/Intersection

    The intersection (red) of two disks (white and red with black boundaries). The circle (black) intersects the line (purple) in two points (red). The disk (yellow) intersects the line in the line segment between the two red points. The intersection of D and E is shown in grayish purple. The intersection of A with any of B, C, D, or E is the empty ...

  7. Monge's theorem - Wikipedia

    en.wikipedia.org/wiki/Monge's_theorem

    Each such pair has a unique intersection point in the extended Euclidean plane. Monge's theorem states that the three such points given by the three pairs of circles always lie in a straight line. In the case of two of the circles being of equal size, the two external tangent lines are parallel.

  8. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    The converse is the Braikenridge–Maclaurin theorem, named for 18th-century British mathematicians William Braikenridge and Colin Maclaurin , which states that if the three intersection points of the three pairs of lines through opposite sides of a hexagon lie on a line, then the six vertices of the hexagon lie on a conic; the conic may be ...

  9. Line at infinity - Wikipedia

    en.wikipedia.org/wiki/Line_at_infinity

    The line at infinity is added to the real plane. This completes the plane, because now parallel lines intersect at a point which lies on the line at infinity. Also, if any pair of lines do not intersect at a point on the line, then the pair of lines are parallel. Every line intersects the line at infinity at some point.