Search results
Results from the WOW.Com Content Network
The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle [1] of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into glucose. The Calvin cycle is present in all photosynthetic eukaryotes and also many ...
Oxygen is required in both ammonia and nitrite oxidation, meaning that both nitrosifying and nitrite-oxidizing bacteria are aerobes. As in sulfur and iron oxidation, NADH for carbon dioxide fixation using the Calvin cycle is generated by reverse electron flow, thereby placing a further metabolic burden on an already energy-poor process.
The reverse Krebs cycle, also known as the reverse TCA cycle (rTCA) or reductive citric acid cycle, is an alternative to the standard Calvin-Benson cycle for carbon fixation. It has been found in strict anaerobic or microaerobic bacteria (as Aquificales ) and anaerobic archea .
The Calvin cycle, also known as the dark reactions, is a series of biochemical reactions that fixes CO 2 into G3P sugar molecules and uses the energy and electrons from the ATP and NADPH made in the light reactions. The Calvin cycle takes place in the stroma of the chloroplast. [159]
In general, photosynthesis in cyanobacteria uses water as an electron donor and produces oxygen as a byproduct, though some may also use hydrogen sulfide [83] a process which occurs among other photosynthetic bacteria such as the purple sulfur bacteria. Carbon dioxide is reduced to form carbohydrates via the Calvin cycle. [84]
Once NADPH has been produced, the Calvin cycle [1] proceeds as in oxygenic photosynthesis, turning CO 2 into glucose. Anoxygenic photosynthesis is a special form of photosynthesis used by some bacteria and archaea , which differs from the better known oxygenic photosynthesis in plants in the reductant used (e.g. hydrogen sulfide instead of ...
A: Mesophyll cell B: Chloroplast C: Vascular tissue D: Bundle sheath cell E: Stoma F: Vascular tissue 1. CO 2 is fixed to produce a four-carbon molecule (malate or aspartate). 2. The molecule exits the cell and enters the bundle sheath cells. 3. It is then broken down into CO 2 and pyruvate. CO 2 enters the Calvin cycle to produce carbohydrates. 4.
The archaeal cell wall is omitted. [6] [7] Bacteria and archaea also can use chemiosmosis to generate ATP. Cyanobacteria, green sulfur bacteria, and purple bacteria synthesize ATP by a process called photophosphorylation. [6] [7] These bacteria use the energy of light to create a proton gradient using a photosynthetic electron transport chain.