Search results
Results from the WOW.Com Content Network
HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase, official symbol HMGCR) is the rate-controlling enzyme (NADH-dependent, EC 1.1.1.88; NADPH-dependent, EC 1.1.1.34) of the mevalonate pathway, the metabolic pathway that produces cholesterol and other isoprenoids.
This intracellular sensor detects low cholesterol levels and stimulates endogenous production by the HMG-CoA reductase pathway, as well as increasing lipoprotein uptake by up-regulating the LDL-receptor. Regulation of this pathway is also achieved by controlling the rate of translation of the mRNA, degradation of reductase and phosphorylation. [1]
The following reaction involves the joining of acetyl-CoA and acetoacetyl-CoA to form HMG-CoA, a process catalyzed by HMG-CoA synthase. [8] In the final step of mevalonate biosynthesis, HMG-CoA reductase, an NADPH-dependent oxidoreductase, catalyzes the conversion of HMG-CoA into mevalonate, which is the primary regulatory point in this pathway.
In archaea, HMG-CoA reductase is a cytoplasmic enzyme involved in the biosynthesis of the isoprenoids side chains of lipids. [3] Class I HMG-CoA reductases consist of an N-terminal membrane domain (lacking in archaeal enzymes), and a C-terminal catalytic region. The catalytic region can be subdivided into three domains: an N-domain (N-terminal ...
Because statins are similar in structure to HMG-CoA on a molecular level, they will fit into the enzyme's active site and compete with the native substrate (HMG-CoA). This competition reduces the rate by which HMG-CoA reductase is able to produce mevalonate, the next molecule in the cascade that eventually produces cholesterol.
In biochemistry, hydroxymethylglutaryl-CoA synthase or HMG-CoA synthase EC 2.3.3.10 is an enzyme which catalyzes the reaction in which acetyl-CoA condenses with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). This reaction comprises the second step in the mevalonate-dependent isoprenoid biosynthesis pathway.
HMG-CoA reductase contains both a cytosolic domain (responsible for its catalytic function) and a membrane domain. The membrane domain senses signals for its degradation. Increasing concentrations of cholesterol (and other sterols) cause a change in this domain's oligomerization state, which makes it more susceptible to destruction by the ...
The systematic name of this enzyme class is (R)-mevalonate:NAD + oxidoreductase (CoA-acylating). [1] Other names in common use include beta-hydroxy-beta-methylglutaryl coenzyme A reductase , beta-hydroxy-beta-methylglutaryl CoA-reductase , 3-hydroxy-3-methylglutaryl coenzyme A reductase , and hydroxymethylglutaryl coenzyme A reductase .