enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. ASME Y14.5 - Wikipedia

    en.wikipedia.org/wiki/ASME_Y14.5

    ASME Y14.5 is a complete definition of Geometric Dimensioning and Tolerancing. It contains 15 sections which cover symbols and datums as well as tolerances of form, orientation, position, profile and runout. [3] It is complemented by ASME Y14.5.1 - Mathematical Definition of Dimensioning and Tolerancing Principles.

  3. Engineering drawing abbreviations and symbols - Wikipedia

    en.wikipedia.org/wiki/Engineering_drawing...

    A material condition in GD&T. Means that a feature of size is at the limit of its size tolerance in the direction that leaves the least material on the part. Thus an internal feature of size (e.g., a hole) at its biggest diameter, or an external feature of size (e.g., a flange) at its smallest thickness. The GD&T symbol for LMC is a circled L.

  4. Run-out - Wikipedia

    en.wikipedia.org/wiki/Run-out

    Run-out or runout is an inaccuracy of rotating mechanical systems, specifically that the tool or shaft does not rotate exactly in line with the main axis. For example; when drilling , run-out will result in a larger hole than the drill's nominal diameter due to the drill being rotated eccentrically (off axis instead of in line).

  5. Geometric dimensioning and tolerancing - Wikipedia

    en.wikipedia.org/wiki/Geometric_dimensioning_and...

    Example of true position geometric control defined by basic dimensions and datum features. Geometric dimensioning and tolerancing (GD&T) is a system for defining and communicating engineering tolerances via a symbolic language on engineering drawings and computer-generated 3D models that describes a physical object's nominal geometry and the permissible variation thereof.

  6. Tolerance analysis - Wikipedia

    en.wikipedia.org/wiki/Tolerance_analysis

    Tolerance analysis is the general term for activities related to the study of accumulated variation in mechanical parts and assemblies. Its methods may be used on other types of systems subject to accumulated variation, such as mechanical and electrical systems.

  7. Model-based definition - Wikipedia

    en.wikipedia.org/wiki/Model-based_definition

    Model-based definition (MBD), sometimes called digital product definition (DPD), is the practice of using 3D models (such as solid models, 3D PMI and associated metadata) within 3D CAD software to define (provide specifications for) individual components and product assemblies.

  8. ASME Y14.41 - Wikipedia

    en.wikipedia.org/wiki/ASME_Y14.41

    ASME Y14.41 is a standard published by American Society of Mechanical Engineers (ASME) which establishes requirements and reference documents applicable to the preparation and revision of digital product definition data (also known as model-based definition), which pertains to CAD software and those who use CAD software to create the product definition within the 3D model.

  9. Flatness (manufacturing) - Wikipedia

    en.wikipedia.org/wiki/Flatness_(manufacturing)

    In manufacturing and mechanical engineering, flatness is an important geometric condition for workpieces and tools. Flatness is the condition of a surface or derived median plane having all elements in one plane. [1] Geometric dimensioning and tolerancing has provided geometrically defined, quantitative ways of defining flatness operationally.