Ads
related to: continuously stirred tank reactor
Search results
Results from the WOW.Com Content Network
The continuous stirred-tank reactor (CSTR), also known as vat-or backmix reactor, mixed flow reactor (MFR), or a continuous-flow stirred-tank reactor (CFSTR), is a common model for a chemical reactor in chemical engineering and environmental engineering. A CSTR often refers to a model used to estimate the key unit operation variables when using ...
The most familiar form of continuous reactor of this type is the continuously stirred tank reactor (CSTR). This is essentially a batch reactor used in a continuous flow. The disadvantage with a single stage CSTR is that it can be relatively wasteful on product during start up and shutdown.
When a reactor is brought into operation, either for the first time or after a shutdown, it is in a transient state, and key process variables change with time. There are three idealised models used to estimate the most important process variables of different chemical reactors: Batch reactor model, Continuous stirred-tank reactor model (CSTR), and
The residence time scale can take the form of a convection time scale, such as volumetric flow rate through the reactor for continuous (plug flow or stirred tank) or semibatch chemical processes: D a I = reaction rate convective mass transport rate {\displaystyle \mathrm {Da_{\mathrm {I} }} ={\frac {\text{reaction rate}}{\text{convective mass ...
General structure of a continuous stirred-tank type bioreactor. On the basis of mode of operation, a bioreactor may be classified as batch, fed batch or continuous (e.g. a continuous stirred-tank reactor model). An example of a continuous bioreactor is the chemostat. [citation needed]
The concept of residence time originated in models of chemical reactors. The first such model was an axial dispersion model by Irving Langmuir in 1908. This received little attention for 45 years; other models were developed such as the plug flow reactor model and the continuous stirred-tank reactor, and the concept of a washout function (representing the response to a sudden change in the ...
Each plug of differential volume is considered as a separate entity, effectively an infinitesimally small continuous stirred tank reactor, limiting to zero volume. As it flows down the tubular PFR, the residence time ( τ {\displaystyle \tau } ) of the plug is a function of its position in the reactor.
The continuously mixed tank reactor is an open system with an influent stream of reactants and an effluent stream of products. [4]: 41 A lake can be regarded as a tank reactor, and lakes with long turnover times (e.g. with low flux-to-volume ratios) can for many purposes be regarded as continuously stirred (e.g. homogeneous in all respects ...
Ads
related to: continuously stirred tank reactor