enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5) , and the same number 21 is also the GCD of 105 and 252 − 105 = 147 .

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    So, Euclid's method for computing the greatest common divisor of two positive integers consists of replacing the larger number with the difference of the numbers, and repeating this until the two numbers are equal: that is their greatest common divisor. For example, to compute gcd(48,18), one proceeds as follows:

  4. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    The greatest common divisor is not unique: if d is a GCD of p and q, then the polynomial f is another GCD if and only if there is an invertible element u of F such that = and =. In other words, the GCD is unique up to the multiplication by an invertible constant.

  5. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    Here the greatest common divisor of 0 and 0 is taken to be 0.The integers x and y are called Bézout coefficients for (a, b); they are not unique.A pair of Bézout coefficients can be computed by the extended Euclidean algorithm, and this pair is, in the case of integers one of the two pairs such that | x | ≤ | b/d | and | y | ≤ | a/d |; equality occurs only if one of a and b is a multiple ...

  6. Lamé's theorem - Wikipedia

    en.wikipedia.org/wiki/Lamé's_theorem

    Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm.Using Fibonacci numbers, he proved in 1844 [1] [2] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5k steps, where k is the number of digits (decimal) of b.

  7. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  8. Jacobi symbol - Wikipedia

    en.wikipedia.org/wiki/Jacobi_symbol

    The above formulas lead to an efficient O(log a log b) [3] algorithm for calculating the Jacobi symbol, analogous to the Euclidean algorithm for finding the gcd of two numbers. (This should not be surprising in light of rule 2.) Reduce the "numerator" modulo the "denominator" using rule 2. Extract any even "numerator" using rule 9.

  9. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    Using Euclidean division, 9 divided by 4 is 2 with remainder 1. In other words, each person receives 2 slices of pie, and there is 1 slice left over. This can be confirmed using multiplication, the inverse of division: if each of the 4 people received 2 slices, then 4 × 2 = 8 slices were given out in total.