Search results
Results from the WOW.Com Content Network
Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. [1] It is also defined as the measure of the tendency of a solution to take in its pure solvent by osmosis .
The Starling equation is the first of two Kedem–Katchalski equations which bring nonsteady state thermodynamics to the theory of osmotic pressure across membranes that are at least partly permeable to the solute responsible for the osmotic pressure difference. [2] [3] The second Kedem–Katchalsky equation explains the trans endothelial ...
When the solutes around a cell become more or less concentrated, osmotic pressure causes water to flow into or out of the cell to equilibrate. [8] This osmotic stress inhibits cellular functions that depend on the activity of water in the cell, such as the functioning of its DNA and protein systems and proper assembly of its plasma membrane. [9 ...
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
The freezing point depression osmometer is an osmometer that is used in determining a solution's osmotic concentration as its osmotically active aspects depress its freezing point. In the past, freezing point osmometry has been used to assess the osmotic strength of colloids and solutions. The osmometer uses the solution's freezing point ...
Osmotic pressure for a polymer solution in two regimes of interaction parameter Schematic of the binodal and spinodal curves for a semi-dilute polymer solution. The light blue region indicates a metastable solution where phase separation occurs and the white region corresponds to well-mixed states.
where is the chemical potential of the pure solvent and is the chemical potential of the solvent in a solution, M A is its molar mass, x A its mole fraction, R the gas constant and T the temperature in Kelvin. [1] The latter osmotic coefficient is sometimes called the rational osmotic coefficient. The values for the two definitions are ...
Thus, for every 1 mole of NaCl in solution, there are 2 osmoles of solute particles (i.e., a 1 mol/L NaCl solution is a 2 osmol/L NaCl solution). Both sodium and chloride ions affect the osmotic pressure of the solution. [2] [Note: NaCl does not dissociate completely in water at standard temperature and pressure, so the solution will be ...