Search results
Results from the WOW.Com Content Network
A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber. [1] It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction. [2] Muscles require innervation to function—and even just to maintain muscle tone, avoiding atrophy.
Neuromuscular junction diseases in this category include snake venom poisoning, botulism, arthropod poisoning, organophosphates and hypermagnesemia.(reference 13) Organophosphates are present in many insecticides and herbicides. They are also the basis of many nerve gases.(reference 27) Hypermagnesmia is a condition where the balance of ...
Nerve conduction studies can only diagnose diseases on the muscular and nerve level. They cannot detect disease in the spinal cord or the brain. In most disorders of the muscle, nerve, or neuromuscular junction, the latency time is increased. [12] This is a result of decreased nerve conduction or electrical stimulation at the site of the muscle.
Several motorneurons compete for each neuromuscular junction, but only one survives until adulthood. [36] Competition in vitro has been shown to involve a limited neurotrophic substance that is released, or that neural activity infers advantage to strong post-synaptic connections by giving resistance to a toxin also released upon nerve stimulation.
The neuromuscular junction (NMJ) is the most well-characterized synapse in that it provides a simple and accessible structure that allows for easy manipulation and observation. The synapse itself is composed of three cells: the motor neuron , the myofiber , and the Schwann cell .
Depolarizing neuromuscular blockers: Depolarizing neuromuscular blockers directly bind to postsynaptic cholinergic receptors of the neuromuscular junction to generate a sustained action potential. This causes prolonged stimulation and desensitization of neuroreceptors, causing skeletal muscle relaxation effects such as paralysis. [ 1 ]
The compound muscle action potential (CMAP) is the resulting response and depends on the motor axons transmitting the action potential, the status of the neuromuscular junction, and muscle fibers. The CMAP amplitudes, motor onset latencies, and conduction velocities are routinely assessed and analyzed.
Note the differences in the scales on the X- and Y-axes. Both are taken from recordings at the mouse neuromuscular junction. End plate potentials (EPPs) are the voltages which cause depolarization of skeletal muscle fibers caused by neurotransmitters binding to the postsynaptic membrane in the neuromuscular junction. They are called "end plates ...