enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shannon number - Wikipedia

    en.wikipedia.org/wiki/Shannon_number

    The Shannon number, named after the American mathematician Claude Shannon, is a conservative lower bound of the game-tree complexity of chess of 10 120, based on an average of about 10 3 possibilities for a pair of moves consisting of a move for White followed by a move for Black, and a typical game lasting about 40 such pairs of moves.

  3. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The number of positive real roots is at most the number of sign changes in the sequence of polynomial's coefficients (omitting zero coefficients), and the difference between the root count and the sign change count is always even. In particular, when the number of sign changes is zero or one, then there are exactly zero or one positive roots.

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f(x) = 0. As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form, root-finding algorithms provide approximations to zeros.

  5. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    This can be done by calculating the total number of zeros in the region using Turing's method and checking that it is the same as the number of zeros found on the line. This allows one to verify the Riemann hypothesis computationally up to any desired value of T (provided all the zeros of the zeta function in this region are simple and on the ...

  6. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    In the polynomial + the only possible rational roots would have a numerator that divides 6 and a denominator that divides 1, limiting the possibilities to ±1, ±2, ±3, and ±6. Of these, 1, 2, and –3 equate the polynomial to zero, and hence are its rational roots (in fact these are its only roots since a cubic polynomial has only three roots).

  7. Hardy–Littlewood zeta function conjectures - Wikipedia

    en.wikipedia.org/wiki/Hardy–Littlewood_zeta...

    In 1914, Godfrey Harold Hardy proved [1] that the Riemann zeta function (+) has infinitely many real zeros. Let () be the total number of real zeros, () be the total number of zeros of odd order of the function (+), lying on the interval (,].

  8. Signed zero - Wikipedia

    en.wikipedia.org/wiki/Signed_zero

    Signed zero is zero with an associated sign.In ordinary arithmetic, the number 0 does not have a sign, so that −0, +0 and 0 are equivalent. However, in computing, some number representations allow for the existence of two zeros, often denoted by −0 (negative zero) and +0 (positive zero), regarded as equal by the numerical comparison operations but with possible different behaviors in ...

  9. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    In various areas of mathematics, the zero set of a function is the set of all its zeros. More precisely, if f : X → R {\displaystyle f:X\to \mathbb {R} } is a real-valued function (or, more generally, a function taking values in some additive group ), its zero set is f − 1 ( 0 ) {\displaystyle f^{-1}(0)} , the inverse image of { 0 ...