Search results
Results from the WOW.Com Content Network
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
Exponentiation by squaring can be viewed as a suboptimal addition-chain exponentiation algorithm: it computes the exponent by an addition chain consisting of repeated exponent doublings (squarings) and/or incrementing exponents by one (multiplying by x) only.
Here, and are the two bases we will be using for the logarithms. They cannot be 1, because the logarithm function is not well defined for the base of 1. [citation needed] The number will be what the logarithm is evaluating, so it must be a positive number.
In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.
When multiplication is repeated, the resulting operation is known as exponentiation. For instance, the product of three factors of two (2×2×2) is "two raised to the third power", and is denoted by 2 3, a two with a superscript three. In this example, the number two is the base, and three is the exponent. [26]
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
The parameters of the hyperoperation hierarchy are sometimes referred to by their analogous exponentiation term; [15] so a is the base, b is the exponent (or hyperexponent), [12] and n is the rank (or grade), [6] and moreover, (,) is read as "the bth n-ation of a", e.g. (,) is read as "the 9th tetration of 7", and (,) is read as "the 789th 123 ...
Each of the operations above are defined by iterating the previous one; [1] however, unlike the operations before it, tetration is not an elementary function. The parameter is referred to as the base, while the parameter may be referred to as the height. In the original definition of tetration, the height parameter must be a natural number; for ...