Search results
Results from the WOW.Com Content Network
An operational amplifier (often op amp or opamp) is a DC-coupled electronic voltage amplifier with a differential input, a (usually) single-ended output, [1] and an extremely high gain. Its name comes from its original use of performing mathematical operations in analog computers .
The input offset voltage is a parameter defining the differential DC voltage required between the inputs of an amplifier, especially an operational amplifier (op-amp), to make the output zero (for voltage amplifiers, 0 volts with respect to ground or between differential outputs, depending on the output type).
The open-loop gain is a physical attribute of an operational amplifier that is often finite in comparison to the ideal gain. While open-loop gain is the gain when there is no feedback in a circuit, an operational amplifier will often be configured to use a feedback configuration such that its gain will be controlled by the feedback circuit components.
The operational amplifier integrator is an electronic integration circuit. Based on the operational amplifier (op-amp), it performs the mathematical operation of integration with respect to time; that is, its output voltage is proportional to the input voltage integrated over time.
Like a standard operational amplifier, the OTA also has a high impedance differential input stage and may be used with negative feedback. [3] But the OTA differs in that: The OTA outputs a current while a standard operational amplifier outputs a voltage. The OTA is usually used "open-loop"; without negative feedback in linear applications.
Power supply imperfections (e.g., power signal ripple, non-zero source impedance) may lead to noticeable deviations from ideal operational amplifier behavior. For example, operational amplifiers have a specified power supply rejection ratio that indicates how well the output can reject signals that appear on the power supply inputs. Power ...
In the sense used in this paragraph, bootstrapping an operational amplifier means "using a signal to drive the reference point of the op-amp's power supplies". [5] A more sophisticated use of this rail bootstrapping technique is to alter the non-linear C/V characteristic of the inputs of a JFET op-amp in order to decrease its distortion. [6] [7]
In electronics, a transimpedance amplifier (TIA) is a current to voltage converter, almost exclusively implemented with one or more operational amplifiers. The TIA can be used to amplify [ 1 ] the current output of Geiger–Müller tubes , photo multiplier tubes, accelerometers , photo detectors and other types of sensors to a usable voltage.